
Rockchip Gstreamer User Guide

ID: RK-YH-YF-921

Release Version: V1.1.1

Release Date: 2022-07-26

Security Level: □Top-Secret □Secret □Internal ■Public

DISCLAIMER

THIS DOCUMENT IS PROVIDED “AS IS”. ROCKCHIP ELECTRONICS CO., LTD.(“ROCKCHIP”)DOES
NOT PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH
RESPECT TO THE ACCURACY, RELIABILITY, COMPLETENESS,MERCHANTABILITY, FITNESS FOR
ANY PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY REPRESENTATION, INFORMATION
AND CONTENT IN THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS
DOCUMENT MAY BE UPDATED OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE
UPGRADES OF THE PRODUCT OR ANY OTHER REASONS.

Trademark Statement

"Rockchip", "瑞芯微", "瑞芯" shall be Rockchip’s registered trademarks and owned by Rockchip. All the other
trademarks or registered trademarks mentioned in this document shall be owned by their respective owners.

All rights reserved. ©2022. Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute this document in
any form in whole or in part without the written approval of Rockchip.

Rockchip Electronics Co., Ltd.

No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian,PRC

Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590

Customer service Fax: +86-591-83951833

Customer service e-Mail: fae@rock-chips.com

af://n0
http://www.rock-chips.com/
mailto:fae@rock-chips.com

Chipset Version

RK356X 1.14.x

RK3588 1.18.x

Date Version Author 修改说明

2022-01-
06

V1.0.0 Jair Wu Initial version

2022-02-
24

V1.0.1 Jair Wu Fix a wrong command option

2022-05-
10

V1.1.0 Jair Wu
Add description of MPP plugins and environment variables, add
new test examples

2022-07-
26

V1.1.1 LGZ Add introduction to Gstreamer and dump AFBC decoded data

Preface

Overview

This document is going to introduce the ways to build and test Gstreamer and related plugins.

Product Version

Intended Audience

This document (this guide) is mainly intended for:

Technical support engineers

Software development engineers

Revision History

Contents

Rockchip Gstreamer User Guide
1. Introduction to Gstreamer

1.1 GStreamer video codec adaptation scheme
2. Source Code and Build

2.1 Path of the Source Code
2.2 Build

3. Commonly Used Commands
4. Commonly Used Plugins

4.1 Source
4.2 Sink

5. Rockchip MPP plugins
5.1 gstmppdec

5.1.1 Description of Major Functions
5.1.2 Description of Major Properties

5.2 gstmppenc
5.2.1 Description of Major Functions
5.2.2 Description of Major Properties

6. Environment Variables
7. Command Examples

7.1 Video Playback
7.2 Multiple Video Playback
7.3 Encode and Preview
7.4 Split Stream

8. AFBC
8.1 AFBC dump the decoded data

9. Subtitle
10. Layers Assignment
11. FAQ

1. Introduction to Gstreamer

GStreamer is an open source multimedia framework. Currently, the multimedia of all Linux SDK (except IPC)
mainly uses GStreamer to connect apps and codec components. Using the powerful features of the GStreamer
plug-in, the written GStreamer plug-in is adapted to Rockchip hardware, so that the app can use hardware codec
for acceleration.

1.1 GStreamer video codec adaptation scheme

As shown in the figure below, take video playback as an example to illustrate the basic process of video
encoding, decoding and display on the Rockchip platform:

The video file (such as mp4) is first decapsulated into video (such as h264, h265 encoding) and audio stream by
demuxer, and the video stream is decoded by video decoder (such as mppvideodec and mppjpegdec); the audio
stream is decoded by audio decoder, and finally the decoded video data is sent to display through the display
plug-in (such as xvimagesink, waylandsink, etc.), and the decoded audio data is sent to the sound card to play the
sound through the audio playback plug-in (alsasink, etc.).

The Rockchip platform implements hardware acceleration for video encoding and decoding through the
rockchipmpp plug-in, including decoding plug-ins: mppvideodec and mppjpegdec; encoding plug-ins:
mpph264enc, mppvp8enc, mppjpegenc, etc. GStreamer will call the rockchipmpp plug-in first in the video
decoding stage. The general process is as follows: plug-ins such as mppvideodec call the API provided by MPP,
and MPP is the video codec middleware of the Rockchip platform and will call the vpu driver (vpu_service). The
hardware codec function can also be tested directly through the test demo provided by MPP (such as
mpi_dec_test\mpi_enc_test...).

The decoded video data is sent to the display device through display plug-ins (such as xvimagesink, waylandsink,
etc.) for display. Different display plug-ins call different display architecture API to connect with different display
architectures. For example, xvimagesink will call the API of X11 to connect to the X11 display architecture, and
waylandsink calls the API of Wayland connects to the Wayland display architecture, etc.

Display related specific refer to SDK Documentation
Rockchip_Developer_Guide_Linux_Graphics_EN.pdf

af://n68
https://gstreamer.freedesktop.org/
af://n70

MPP source code refer to <SDK>/external/mpp/，MPP related documentation refer to
<SDK>/docs/Linux/Multimedia/Rockchip_Developer_Guide_MPP_EN.pdf

test demo refer to: <SDK>/external/mpp/test

2. Source Code and Build

2.1 Path of the Source Code

Buildroot:

The source code of Gstreamer and related plug-ins can be downloaded from the network, and then apply the
patches provided by RK. For details, please refer to <SDK>/buildroot/package/gstreamer1/ .

Debian：

Search in Debian Repository to download the source code in Debian，and apply the patches provided by RK, the
path of the patches is <SDK>/buildroot/package/gstreamer1/<submodule>/<version>/*.patch ,
now RK only provided two version in 1.18.5 and 1.20.0.

Gstreamer-rockchip:

The source code of the MPP plugin and rkximagesink is in the directory: <SDK>/external/gstreamer-

rockchip , Buildroot and Debian share the same repository.

2.2 Build

Buildroot:

Enable related macros (which are enabled by default) and build them in the SDK root directory directly. All the
macros are packaged in <SDK>/buildroot/configs/rockchip/*_gst.config , include them in target
configuration. It supported to select building versions, such as BR2_PACKAGE_GSTREAMER1_18 and
BR2_PACKAGE_GSTREAMER1_20 .

BR2_PACKAGE_MPP=y
BR2_PACKAGE_MPP_ALLOCATOR_DRM=y
BR2_PACKAGE_GSTREAMER1_ROCKCHIP=y
BR2_PACKAGE_LINUX_RGA=y
BR2_PACKAGE_CA_CERTIFICATES=y
BR2_PACKAGE_LIBSOUP_SSL=y
BR2_PACKAGE_GSTREAMER1=y
BR2_PACKAGE_GST1_PLUGINS_BASE=y
BR2_PACKAGE_GST1_PLUGINS_BASE_PLUGIN_ALSA=y
BR2_PACKAGE_GST1_PLUGINS_BASE_PLUGIN_VIDEOCONVERT=y
BR2_PACKAGE_GST1_PLUGINS_BASE_PLUGIN_VIDEOTESTSRC=y
BR2_PACKAGE_GST1_PLUGINS_GOOD=y
BR2_PACKAGE_GST1_PLUGINS_GOOD_PLUGIN_AUDIOPARSERS=y
BR2_PACKAGE_GST1_PLUGINS_GOOD_PLUGIN_AUTODETECT=y
BR2_PACKAGE_GST1_PLUGINS_GOOD_PLUGIN_DEINTERLACE=y
BR2_PACKAGE_GST1_PLUGINS_GOOD_PLUGIN_FLV=y
BR2_PACKAGE_GST1_PLUGINS_GOOD_PLUGIN_GDKPIXBUF=y
BR2_PACKAGE_GST1_PLUGINS_GOOD_PLUGIN_MATROSKA=y

af://n79
af://n80
https://salsa.debian.org/gstreamer-team
af://n87

The complete list of plugins can be found in menuconfig->Target packages->Audio and video applications-
>gstreamer 1.x.

Debian:

The source code should be placed on the board, and make sure that the debian directory exists in the root
directory of the source code. Enter the source root directory and execute:

It is generally recommended to use the first way to build the deb installation package, which can ensure that the
options such as compilation and installation are unified.

Note: Some compilation options depend on the macro definitions in header files such as video-format.h , so
you need to install the libgstreamer-plugins-base1.0-dev package first to ensure the headers such as
video-format.h to the latest and ensure that certain features are turned on. If some plugins are missing, check
the compilation script and log, install all the dependencies of target plugin, and make sure target plugin is
included in debian/*.install, then rebuild.

3. Commonly Used Commands

gst-launch-1.0

Gstreamer launcher for quickly building pipelines, examples are as follows:

BR2_PACKAGE_GST1_PLUGINS_GOOD_PLUGIN_MPG123=y
BR2_PACKAGE_GST1_PLUGINS_GOOD_PLUGIN_SOUPHTTPSRC=y
BR2_PACKAGE_GST1_PLUGINS_BAD=y
BR2_PACKAGE_GST1_PLUGINS_BAD_PLUGIN_DVBSUBOVERLAY=y
BR2_PACKAGE_GST1_PLUGINS_BAD_PLUGIN_DVDSPU=y
BR2_PACKAGE_GST1_PLUGINS_BAD_PLUGIN_JPEGFORMAT=y
BR2_PACKAGE_GST1_PLUGINS_BAD_PLUGIN_KMS=y
BR2_PACKAGE_GST1_PLUGINS_BAD_PLUGIN_MPEGDEMUX=y
BR2_PACKAGE_GST1_PLUGINS_BAD_PLUGIN_MPEG2ENC=y
BR2_PACKAGE_GST1_PLUGINS_BAD_PLUGIN_VIDEOPARSERS=y
BR2_PACKAGE_GST1_PLUGINS_BAD_PLUGIN_ADPCMDEC=y
BR2_PACKAGE_GST1_PLUGINS_BAD_PLUGIN_ADPCMENC=y
BR2_PACKAGE_GST1_PLUGINS_BAD_PLUGIN_FAAD=y
BR2_PACKAGE_GST1_PLUGINS_UGLY=y
BR2_PACKAGE_GST1_PLUGINS_UGLY_PLUGIN_ASFDEMUX=y
BR2_PACKAGE_GST1_PLUGINS_UGLY_PLUGIN_DVDLPCMDEC=y
BR2_PACKAGE_GST1_PLUGINS_UGLY_PLUGIN_DVDSUB=y
BR2_PACKAGE_GST1_PLUGINS_UGLY_PLUGIN_MPEG2DEC=y
...

1 Update software sources
apt update
2 Install dependent libraries
apt build-dep .
3 Optional: start building the deb installation package
dpkg-buildpackage -b -d -uc -us
After the building is completed, the deb installation package will be generated
in the upper directory, which can be installed by using dpkg -i xxx.deb.
3 Optional: build and install
meson build && ninja -C build install

af://n97

gst-play-1.0

Gstreamer player, used to play various streaming media, examples are as follows:

gst-inspect-1.0

A finder to list all plugins or detailed information of a plugin, for example:

Enable log function

The log levels are divided into ERROR(1), WARNING(2), FIXME(3), INFO(4), DEBUG(5), LOG(6),
TRACE(7) and so on.

4. Commonly Used Plugins

4.1 Source

Refers to plugins that can generate data but cannot receive data.

filesrc

Read data from a file, an example is as follows:

 # Generate a video by videotestsrc, and display it through xvimagesink
 gst-launch-1.0 videotestsrc ! xvimagesink

 # Play test.mp4 and display it through xvimagesink
 gst-play-1.0 test.mp4 --videosink=xvimagesink
 # Commonly used command options
--flags # bit0: video, bit1: audio, bit2: subtitle, such as --flags=1
means only video is played
 --videosink # specify videosink
 --audiosink # specify audiosink
 --use-playbin3 # use playbin3, otherwise use playbin2

 # Without any parameters, list all plugins
 gst-inspect-1.0
 # List all information about the xvimagesink plugin
 gst-inspect-1.0 xvimagesink

 #Set environment variables
 export GST_DEBUG=2
 #Or specified before the command, and invalid after the end of the command
 GST_DEBUG=2 gst-play-1.0 ...

 #Specify different log levels for different modules, support wildcards,
fpsdisplaysink is specified as DEBUG (5), xvimage* is specified as FIXME (3),
others are specified as WARNING (2)
 GST_DEBUG=2,fpsdisplaysink:5,xvimage*:3

 gst-launch-1.0 filesrc location=/tmp/test ! filesink location=/tmp/test2

af://n118
af://n119

videotestsrc

Generate video data, an example is as follows:

v4l2src

Capture from camera, an example is as follows:

rtspsrc

Get stream from RTSP server, an exmaple is as follows:

4.2 Sink

Refers to plugins that accept data but do not send data.

filesink

Save the received data as a file, an example is as follows:

fakesink

Discard all the received data, an example is as follows:

xvimagesink

Video Sink, receive video and display, which is implemented by the X11 interface, an example is as
follows:

kmssink

Video Sink, receives video and displays it. It is implemented through the kms interface and requires
exclusive hardware decoding layer. The example is as follows:

 # Output video through default format
 gst-launch-1.0 videotestsrc ! xvimagesink
 # Output the video through the specified format
 gst-launch-1.0 videotestsrc ! "video/x-raw,width=1920,height=1080,format=
(string)NV12" !xvimagesink

gst-launch-1.0 v4l2src ! video/x-raw,width=1920,height=1080,format=NV12 !
waylandsink

gst-launch-1.0 rtspsrc location=rtsp://192.168.1.105:8554/ ! rtph264depay !
h264parse ! mppvideodec ! waylandsink

 gst-launch-1.0 filesrc location=/tmp/test ! filesink location=/tmp/test2

 gst-launch-1.0 filesrc location=/tmp/test ! fakesink

 gst-launch-1.0 videotestsrc ! xvimagesink

af://n141

waylandsink

Video Sink, receives video and displays, it is implemented through the wayland interface, the example is as
follows:

rkximagesink

Video Sink, receives video and displays it, zero-copy and other functions are implemented through the drm
interface, and with better performance, but requires exclusive hard decoding layer. An example is as
follows:

fpsdisplaysink

Video Sink, receives the video and counts the frame rate, and at the same time transfers the video to the
next level Sink for display, an example is as follows:

5. Rockchip MPP plugins

	 The decode/encode plugins is based on MPP, the base class of decode plugin is GstVideoDecoder class, the
base class of encode plugin is GstVideoEncoder class. The path of source code is
<SDK>/external/gstreamer-rockchip/gst/rockchipmpp .

	 The formats in support for decoder are JPEG, MPEG, VP8, VP9, H264, H265 1 .

	 The formats in support for encoder are JPEG, H264, H265, VP8.

5.1 gstmppdec

The path of source code is gstreamer-rockchip/gst/rockchipmpp, include mppvideodec, mppjpegdec, the
following will take mppvideodec as an example for description.

 gst-launch-1.0 videotestsrc ! kmssink
 # Common commands
 connector-id #specifies the screen
 plane-id #pecifies the hardware layer
 render-rectangle #specifies the rendering range

 gst-launch-1.0 videotestsrc ! waylandsink

 gst-launch-1.0 videotestsrc ! rkximagesink

 # Set log level to TRACE(7) for real-time framerate，set log level to DEBUG(5)
for max/min framerate.
 GST_DEBUG=fpsdisplaysink:7 gst-play-1.0 --flags=3 --videosink="fpsdisplaysink
video-sink=xvimagesink signal-fps-measurements=true text-overlay=false
sync=false"

af://n178
af://n183

5.1.1 Description of Major Functions

gst_mpp_dec_start: Create MPP and Allocator。

gst_mpp_dec_set_format: Init the MPP, setup codec type and format, configure the properties such as Fast
Mode, Ignore Error.

gst_mpp_dec_handle_frame: Get the mpp packet from MPP by get_mpp_packet, send to MPP by
send_mpp_packet after filling all the data.

gst_mpp_dec_loop: Get the decoded frame by poll_mpp_frame, and push to next plugin.

gst_mpp_dec_rga_convert: If customers need to do some operation such as format convert, rotate, scale, crop,

push to next plugin after all operations are completed by RGA 2 .

5.1.2 Description of Major Properties

rotation: Angle of rotation, 0°, 90°, 180°, 270° are avaliable.

width: Zero for no scaling.

height: Zero for no scaling.

crop-rectangle: Specified the crop range by <x, y, w, h>, which means start from the <x, y>, cropping a w*h
image to next plugin. It should be noted that scaling has a higher priority than cropping, so cropping parameters
should be calculated based on the scaled width and height, as shown in the figure for the processing logic when
specifying crop-rectangle=‘<1920,0,1920,1080>' width=3840 height=1080 :

gstreamer-rockchip/gst/rockchipmpp/
├── gstmppdec.c
├── gstmppdec.h
├── gstmppjpegdec.c
├── gstmppjpegdec.h
├── gstmppvideodec.c
├── gstmppvideodec.h
……

af://n186
af://n193

arm-afbc: ARM Frame Buffer Compression, disabled by default, some platform such as RK3399 do not support
AFBC. Enable it the DDR bandwidth occupation can be reduced, and the decoding efficiency of some chips will
be significantly improved.

format: Output format. If it is not 0-"auto", the format will be converted.

fast-mode: Enable MPP fast mode. For example, on the RK3588 platform, part of the decoding process can be
parallelized to improve decoding efficiency. Enbaled by default.

ignore-error: Ignore error of MPP decoder, force output the decoded frame. Enabled by default.

5.2 gstmppenc

The path of source code is gstreamer-rockchip/gst/rockchipmpp, include mpph264enc, mppvp8enc, mppjpegenc,
etc. The following will take mpph264enc as an example for description.

5.2.1 Description of Major Functions

gst_mpp_enc_start: Create MPP, setup codec type and format。

gst_mpp_enc_apply_properties: Configure the properties such as gop, bps.

gstreamer-rockchip/gst/rockchipmpp/
├── gstmppenc.c
├── gstmppenc.h
├── gstmppjpegenc.c
├── gstmppjpegenc.h
├── gstmpph264enc.c
├── gstmpph264enc.h
……

af://n203
af://n206

gst_mpp_enc_handle_frame: Get the buffer from last plugin and store it.

gst_mpp_rga_convert: If any operation such as rotate, scale is in need, will complete it via RGA 3 before
storing the buffer.

gst_mpp_enc_loop: Get the oldest frame in queue, send it to MPP by encode_put_frame, and get packet back by
encode_get_packet, then push the packet to next plugin.

5.2.2 Description of Major Properties

width: Zero for no scaling.

height: Zero for no scaling.

rc-mode: Bit rate control mode, support VBR, CBR and Fixed QP.

bps: Target bit rate, ignored in Fixed QP mode.

bps-max: Max bit rate, ignored in Fixed QP mode.

bps-min: Min bit rate, ignored in Fixed QP mode.

gop: Group Of Picture, the interval of two I frames. 0 indicates that there is only one I frame, other frames are P
frames, 1 means all I frames, 2 means the sequence is I P I P I P... . Gop is equal to framerate by default.

level: Indicates the level_idc parameter in SPS.

profile: Indicates the profile_idc parameter in SPS.

rotation: Angle of rotation, 0°, 90°, 180°, 270° are avaliable.

6. Environment Variables

Common environment variables are sorted into /etc/profile.d/gst.sh. For detailed instructions, you can directly
view the comments in the script.

7. Command Examples

export GST_MPP_VIDEODEC_DEFAULT_ARM_AFBC=1: Try to use ARM AFBC to get better
performance, but not work for all sinks.
export GST_MPP_VIDEODEC_DEFAULT_FORMAT=NV12: Convert to NV12(using RGA) when
output format is not NV12.
export GST_V4L2_PREFERRED_FOURCC=NV12:YU12:NV16:YUY2: Preferred formats for V4L2.
export GST_VIDEO_CONVERT_PREFERRED_FORMAT=NV12:NV16:I420:YUY2: Preferred formats
for videoconvert.
export GST_VIDEO_CONVERT_USE_RGA=1: Try RGA 2D accel in videoconvert and
videoscale.
export GST_VIDEO_FLIP_USE_RGA=1: Try RGA 2D accel in videoflip.
export GST_MPP_DEC_DEFAULT_IGNORE_ERROR=0: Disable ignoring MPP error.
export GST_MPP_DEC_DEFAULT_FAST_MODE=0: Disbale fast mode。
...

af://n213
af://n224
af://n227

7.1 Video Playback

7.2 Multiple Video Playback

7.3 Encode and Preview

Use tee plugin, copy the data of camera capture, the first way send to mpph264enc for encoding, and then save to
file by filesink, the second way send to autovideosink for display rendering. It shoud be noted that add the queue
plugin after the tee plugin, which can buffering the data, avoid stream blocking.

7.4 Split Stream

Some plugins such as qtdemux, will generate not only one source pad, such as audio pads, video pads, subtitle
pads. You can named the plugin, and then get the target stream. As the following example, named the qtdemux to
qt, then qt.audio_0 is the first audio stream, qt.video_0 is the first video stream, save these two streams to
different files. And the queue plugin is needed too. The different plugins have different name style for their pads,
you can check it via gst-inspect command, or directly use like qt. ! queue ! mppvideodec in your
pipeline, the gstreamer framework will negotiate the caps with next plugin.

8. AFBC

AFBC stands for ARM Frame Buffer Compression, which is a compression format used to save bandwidth.
Currently, the encoding formats of AFBC supported by the mppvideodec plugin are: H264, H265, VP9, ​​and the
supported color formats are NV12, NV12 10bit, NV16. The way to open is as follows:

gst-play-1.0 --flags=3 --videosink="fpsdisplaysink video-sink=xvimagesink signal-
fps-measurements=true text-overlay=false sync=false" --audiosink="alsasink
device=hw:0,0" test.mp4

Use the render-rectangle of waylandsink for different rendering positions
gst-launch-1.0 filesrc location=/usr/local/test.mp4 ! parsebin ! mppvideodec !
waylandsink render-rectangle='<0,0,400,400>' &
gst-launch-1.0 filesrc location=/usr/local/test.mp4 ! parsebin ! mppvideodec !
waylandsink render-rectangle='<0,500,400,400>' &
gst-launch-1.0 filesrc location=/usr/local/test.mp4 ! parsebin ! mppvideodec !
waylandsink render-rectangle='<0,1000,400,400>' &

gst-launch-1.0 v4l2src ! 'video/x-raw,format=NV12' ! tee name=tv ! queue !
mpph264enc ! 'video/x-h264' ! h264parse ! 'video/x-h264' ! filesink
location=/data/out.h264 tv. ! queue ! autovideosink

gst-launch-1.0 filesrc location=test.mp4 ! qtdemux name=qt qt.audio_0 ! queue !
filesink location=audio.bin qt.video_0 ! queue ! filesink location=video.bin

af://n228
af://n230
af://n232
af://n235
af://n238

The waylandsink and xvimagesink support rendering AFBC format, or using kmssink/rkximagesink specufied
Cluster plane for display, this method requires an exclusive plane. The examples are as follows：

8.1 AFBC dump the decoded data

If you wants to check whether the hardware decoded data is correct in GStreamer, can dump the decoded data
(usually NV12 and other format images) in the following way:

1. Turn on the MPP log function

Then there will be decoded data of MPP's own dump in the /data directory. This is the dump debugging function
that comes with MPP. Dump is not supported when AFBC is enabled; when AFBC is not enabled, the dumped
data is generally in NV12 format, which can be viewed using rawplayer (or other raw data players).

2. Use GStreamer's plugin filesink dump to the decoded data. This method supports dump regardless of
whether AFBC is turned on or not. The usage is as follows:

 The decoded AFBC data is in the xxx.yuv file. Because AFBC is turned on, the dumped image needs to be
decompressed before it can be viewed using rawplayer (or other raw data players). The decompression command
(the decompression software afbcDec should be obtained from the relevant person in charge):

The image format output by afbcDec is ARGB.

If you want to check whether each frame of the video is correct, you also need to divide the file dumped by
filesink into frames: because the above decompression software can only transfer one frame of data, but all the
frames of the dumped video are in the same file. An example of spliting the frames is as follows:

Enable global AFBC，applicable to situations where mppvideodec cannot be
directly operated using some command like gst-play-1.0
export GST_MPP_VIDEODEC_DEFAULT_ARM_AFBC=1
Enable afbc for current pipeline
gst-launch-1.0 filesrc location=/test.mp4 ! parsebin ! mppvideodec arm-afbc=true
! waylandsink

GST_DEBUG=*mpp*:4 enable the log of mpp plugin, you can use the log to check if
the AFBC is enabled successfully, if "AFBC" is not printed, it may be
unsuccessfully opened or the format does not in support
GST_DEBUG=*mpp*:4 gst-play-1.0 --flags=3 --videosink=waylandsink test.mp4
GST_DEBUG=*mpp*:4 gst-play-1.0 --flags=3 --videosink="kmssink plane-id=101"
...
0:00:00.256819945 29143 0x7f70008700 INFO mppdec
gstmppdec.c:465:gst_mpp_dec_apply_info_change:<mppvideodec0> applying NV12(AFBC)
1920x1080 (1920x1104)
...

export mpp_debug=0x400

gst-launch-1.0 uridecodebin uri=file://xxx ! filesink location=xxx.yuv

./afbcDec filename w h format afbcmode
#eg: ./afbcDec 178_Surfa_id-26_1088x1824_z-0.bin 1088 1824 0 1
0=RGBA,1=NV12,2=RGB888, afbcmode 0=afbc, 1=afbc|YTR

af://n243

9. Subtitle

When subtitles are turned on, there will be lags. Usually, subtitle synthesis requires intercept some images from
the video and convert them to RGB, and then synthesize subtitles and then convert them back to the source
format before sending them for display. That is, the time-consuming of decoding also needs to consider the time-
consuming of subtitle synthesis. , causing the overall frame rate to drop. Use the gst-play-1.0 command to test
and subtitles can be turned off with --flags=3 . Subtitles should be implemented independently of the video
layer using frameworks such as QT.

10. Layers Assignment

When using rkximagesink or kmssink, it is required to have a exclusive hardware layer, and the plug-in will
automatically find the layer to play, but the automatically found layer may not meet the requirements, so you
have to manually specify the layer, the way is as follows:

The 117 is the ID of the target layer, which can be confirmed through the /sys/kernel/debug/dri/0/state
node. You can use the following command to list all layers:

The plane[xx] is the plane-id. Usually, different layers support different formats. For example, Cluster supports
AFBC, but Esmart does not support AFBC. Please refer to the datasheet or TRM for details. If the node is not
exist, you can list it with modetest -p.

11. FAQ

GST_DEBUG view the size of each frame
GST_DEBUG=filesink:6 gst-launch-1.0 uridecodebin uri=file://xxx ! filesink
location=xxx.yuv

0:00:01.224149631 14266 0x7f7c00ab00 DEBUG filesink
gstfilesink.c:769:gst_file_sink_flush_buffer:<filesink0> Flushing out buffer of
size 1390080
Use the split command to split frames
split -b 1390080 -a 5 -d xxx.yuv dump_frame

gst-play-1.0 --flags=3 test.mp4 --videosink="kmssink plane-id=117"

root@linaro-alip:/# cat /sys/kernel/debug/dri/0/state | grep "plane\["
plane[57]: Smart1-win0
plane[71]: Cluster1-win0
plane[87]: Smart0-win0
plane[101]: Cluster0-win0
plane[117]: Esmart1-win0
plane[131]: Esmart0-win0
You can also use cat /sys/kernel/debug/dri/0/state directly to list complete
information

af://n259
af://n261
af://n267

1. There is no lagging when playing 4K 30FPS, but there is lagging when playing 4K 60FPS.

Due to system load, DDR bandwidth and other issues, 4K 60FPS may not be achieved. You can try to
enable AFBC, refer to the AFBC chapter. In addition, the synchronization function of subtitles and sink can
be turned off, such as gst-play-1.0 test.mp4 --flags=3 --videosink="waylandsink

sync=false" , when the frame rate cannot reach 60FPS, turning on sync will cause the video frame
timestamps do not align with clocks resulting in obvious frame drop.

2. There is relatively lagging when playing some sources, and the CPU usage is very high.

Currently hard decode supports H264, H265, VP8, VP9, MPEG. You can turn on DEBUG through echo
0x100 > /sys/module/rk_vcodec/parameters/mpp_dev_debug to see if the serial port or dmesg
has decoded printing. If not, it may be a format not supported by the hard decode.

3. Some sources cannot be played, LOG is lagging and the progress is not printed or the progress is always 0

You can try to use playbin3, like gst-play-1.0 --flags=3 --use-playbin3 test.mp4 .

4. Flickering when playing 4K video after AFBC is turned on

First make sure to turn on performance mode, echo performance | tee $(find /sys/ -name

*governor) . Then, confirm whether there is obvious scaling in the vertical direction, such as using the
vertical screen to play the horizontal video, in this case, the AFBC performance is not as good as the non-
AFBC performance.

5. Play with pictures but no sound

You can manually specify the audiosink, such as gst-play-1.0 --flags=3 test.mp4 --

audiosink="alsasink device=hw:0,0" . It is recommended to make sure it can work using basic
testing tools such as aplay and then use gstreamer to test.

6. When running the decompression command afbcDec, an error is reported: the library libgraphic_lsf.so is
missing

Find the relevant person in charge to obtain libgraphic_lsf.so, and push the missing libgraphic_lsf.so library
to the /usr/lib/ directory.

1. Only the formats supported by the plug-in are listed here. Please check the relevant datasheet if the specific chip supports it. ↩

2. At present, some platforms such as RK3588, RGA function is abnormal, so it is not recommended to use it. ↩

3. At present, some platforms such as RK3588, RGA function is abnormal, so it is not recommended to use it. ↩

	Rockchip Gstreamer User Guide
	Introduction to Gstreamer
	GStreamer video codec adaptation scheme

	Source Code and Build
	Path of the Source Code
	Build

	Commonly Used Commands
	Commonly Used Plugins
	Source
	Sink

	Rockchip MPP plugins
	gstmppdec
	Description of Major Functions
	Description of Major Properties

	gstmppenc
	Description of Major Functions
	Description of Major Properties

	Environment Variables
	Command Examples
	Video Playback
	Multiple Video Playback
	Encode and Preview
	Split Stream

	AFBC
	AFBC dump the decoded data

	Subtitle
	Layers Assignment
	FAQ

